
Scratch Programming for Primary School Teachers

Quiz Game

For Scratch Version 1.4

Stewart Watkiss

PenguinTutor.com
www.penguintutor.com/teachers

January 2014

http://www.penguintutor.com/teachers

About this guide
During my preparation for an introduction to Scratch training session for a UK primary school, I
wanted a guide that the teachers could use to create a practical program in Scratch. I wanted that
guide to cover the key aspects of computer programming in the national curriculum. I was able to
find many guides that were aimed at the school children directly but it would take a lot of time to
work through from the beginner level in Scratch to cover the different programming techniques in
the curriculum. Conscious of the work load that teachers are under, especially with the introduction
of the new curriculum I wanted a guide that could see them create a working program in around an
hour that would cover all those aspects. Unable to find a suitable existing guide I created this quiz
game as a method of introducing the different techniques.

Working through the guide will create a computer game and in doing so introduce all the
programming techniques from the primary school teacher training session. This aims to cover the
main programming techniques and knowledge required for the Key Stage 1 and 2 curriculum. This
includes creating a programming sequence (from design to code), selections (conditional if
statements), repetition (repeat and forever loops). It also covers variables (including strings and
lists) and the inputs and outputs.

The guide is not intended for teaching direct to primary school children as it introduces a lot of
techniques in a single game. It is anticipated that this is instead used by a teacher wanting to
understand the different techniques prior to them running a more step-by-step course within their
classroom. It may also be useful for older children who have already had an introduction to Scratch,
but have not yet covered all the different programming techniques used.

The light-bulb is used to indicate that this is additional information or a suggestion for
future development.

About the author
Stewart Watkiss graduated from The University of Hull, UK, with a masters degree in electronic
engineering. Since then he has been working in the IT industry for the last 17 years, including
Linux and networking.

Linux has been his passion for many years and he has gained certification at LPIC-2. He runs the
website PenguinTutor.com providing information on learning Linux, electronics and the Raspberry
Pi. After working on several projects with the Raspberry Pi both on his own or with his children he
signed up as a STEM ambassador to pass some of his knowledge on to school children.

He has also been technical reviewer of the book “Learning Raspberry Pi with Linux”, published by
Apress, and a volunteer guest writer for The MagPi Raspberry Pi magazine.

1

http://www.penguintutor.com/

Table of Contents
Introduction..3
About Scratch...3
Getting started with Scratch...3

A. The Scratch stage..5
B. The sprite list area...5
C. The sprite edit area..5
D. The code blocks area...5

Designing a game...6
Design Specification – Quiz Game..7

Aim..7
Sprites..7
Variables...7

Running Scratch...8
Creating the code..8
Setting up the Sprites..8
The main program script..12
The start button...14
Creating the list variables...15

The Quiz Master Script..18
Testing whilst creating the program...23
Debugging..24

Test 1..24
Test 2..24
Test 3..25
Test 4..25
Other debugging techniques..26
Telling the player how they did...27

Leave the stage...27
The completed script for the Quiz Master sprite..29
Summary so far...30
Next steps...30
Further resources..30
Copyright..31

2

Introduction

Following this guide will create a computer quiz game using the Scratch programming languages. It
is recommended that this is worked through in Scratch ending in a complete working game. There
are then suggestions for improving the game which can be used to expand the game further and test
understanding of the key concepts.

Full details of the project are available from the accompanying website
www.penguintutor.com/teachers/. This includes a link to the Scratch website where a copy of the
completed game can be found.

About Scratch
Scratch is a programming language created by the Lifelong Kindergarten group at MIT. It is
designed for teaching programming to children aged between 8 and 16, but can be used by people
of all ages. It is available for free and can be run on various different computer platforms including
a web-based version.

Scratch is usually considered the first choice when looking at a PC based programming language
for teaching primary school children. It can be installed on most school computers and is available
pre-installed on the Raspberry Pi education computer when running the Raspbian operating system.
When used with the Raspberry Pi it can also be used to interface with simple electronic circuits as a
first step in physical computing.

The latest version is Scratch version 2 which is primarily web-based and accessed through a web
browser using the Flash plug-in. An older version is available, Scratch 1.4, which can be
downloaded and installed onto computers. This guide is based on Scratch 1.4. It can be run on
version 2 of Scratch, but there have been significant interface changes in the newer version.

Scratch website: scratch.mit.edu/
Download Scratch 1.4: scratch.mit.edu/scratch_1.4/

Note that programs created in Scratch version 1.4 can be loaded and edited in Scratch version 2, but
it is not possible to edit a Scratch version 2 file in Scratch version 1.4.

After creating a program it can be uploaded onto the Scratch website where others can then run it in
a web browser.

Getting started with Scratch

Scratch uses a drag-and-drop approach to programming making it very easy to use. It comes with a
development environment that can be used to create programs without needing to learn any
complicated rules about the computer language.

If Scratch has been installed onto your computer then you should have an icon
with the picture of a cartoon cat. This can be used to run the Scratch development
environment.

3

http://scratch.mit.edu/scratch_1.4/
http://scratch.mit.edu/
http://www.penguintutor.com/teachers/

If you don't have Scratch installed on you computer then as long as you have a recent browser with
the Flash plug-in you can program in the online version of Scratch (see previous chapter).

When you launch Scratch you should have an application that looks similar to the screen-shot
below:

The application is split into four main sections, which I have coloured and labelled below as A, B, C
and D to make them easier to identify.

4

A. The Scratch stage

The most important part of the Scratch application is the stage area (section A), this is a
representation of the screen when the program is running. The look of the game will be designed on
the stage area and it's also where you can see the program run. You can enlarge the stage to fill the
screen using the small icons to the top right.

There is also a Green Flag, which is used to start the program running and a Red Stop Sign, used to
stop the program.

B. The sprite list area

If the screen is a stage then the sprites are the actors, props and lights used to create the show. In
Scratch a sprite can have it's own costumes, scripts and sounds associated with it.

New sprites are created in the sprite list area (section B) where they can then be loaded into the
sprite editing area.

The stage is considered a special type of sprite and is always shown in the left part of the sprites list
area.

C. The sprite edit area

When we want to change a sprite then we load it into the sprite edit area (section C). Sprites are
loaded into this section by click on them in the sprite list, where they will then be shown with a
border. There are three tabs in the sprite area called Scripts, Costumes and Sounds.

In Scratch a chunk of program code is called a script and is edited on the scripts tab. It is fairly
common to have several scripts associated with each sprite. The stage can also have its own scripts
which is often used to control the sprites or the stage background.

The costumes tab is used to change the look of a sprite. It does not need to be a different form of
clothing (although that is one use of a costume), it could be used to represent a different object or
completely different look (such as a firework rocket which changes to a burst of light when it
explodes). When editing the stage the costumes tab is replaced with a background tab which can be
used to change the scene.

The sound tab is used to add sounds to the sprite. We won't be using sound in this example, but it is
suggested as something you may like to add later.

D. The code blocks area

The code blocks area (D) holds the blocks of code that can be built together to make the scripts.
Each block of code is shaped with interlocking tabs which can be connected with other appropriate
blocks of code.

The blocks of code are grouped into eight different and are colour coded along with the code
groups.

5

The groups are:

Motion – moving a sprite around the screen.

Looks – appearance of the sprite. Also used to represent bubble speech.

Sound – make noises and play music

Pen – used for drawing (not used in this example)

Control – used to make the scripts start and stop and handle decisions

Sensing – detect the position of the sprite and the mouse

Operators – perform logical and mathematical operations

Variables – used to hold information such as numbers or text

Designing a game
Before a game is created in Scratch it is useful to design the program on paper first. This could be a
simple page describing the way the game will work or something more involved including example
pictures and diagrams.

I have kept the paper design fairly simple as an explanation of the game we are going to create and
some of the key scripts and variables. I have called this the Design Specification, although it does
not need be treated as something quite so formal.

6

Design Specification – Quiz Game

Aim

This is a quiz game. After clicking start a quiz master will come on to the stage and ask 3 questions.
The player will respond with a string answer, and will be told if the answer is correct. At the end the
player will be told how well they did. The game can then start again using the start button.

Sprites

A list of sprites to be used in the game.

StartButton - “Click to start”

QuizMaster – Girl or Boy
Standing (facing front)
Walking (facing side)

These are stick drawings, will use existing sprite costumes in the actual game:

Variables

It is not necessary to list all variables, only the main ones and those shared between different
scripts.

score – number for the current score
questions – List of all questions
answers – List of all answers

7

Start

Running Scratch
There are two versions of Scratch, one of which runs in a web client and the other is installed onto
the local computer. These instructions are based on Scratch 1.4 which is installed onto the local
computer and can be started from a Scratch icon on the desktop or start menu.

If you would rather use version 2 then this can be launched by pointing a modern web-browser at
scratch.mit.edu . Note that this will only work if connected to the Internet and a recent version of
Flash is installed, which may limit which computers version 2 can be run from. If you are using
version 2 then the layout of the various aspects will be different from that shown in the example
screen-shots.

Creating the code
The order of creating the game comes down to personal preference. For this game I have created the
sprites first which means that we can set-up the visual aspects (sprites and costumes) first and then
concentrate on the code afterwards.

Setting up the Sprites
When you launch Scratch you should have a blank program with a cat sprite shown on the stage.
This is the default setting for new programs.

We won't be using the cat so delete Sprite1 by right clicking on the Sprite in the palette and clicking

8

http://scratch.mit.edu/

delete.

Now we can add an image of a person who will be our quiz master. Create a new sprite from file
(folder and star icon) and find an appropriate person facing forwards. I've used the girl1-standing
image from the People folder.

On the scripts section in the centre, rename the sprite to QuizMaster.

To add a bit of an introduction we will have the quiz master walk onto the stage. For this example
we will have the person look as though they are walking. Click on the costumes tab and import a
new costume.

Choose a walking image that matches the previous costume. In my case girl1-walking.

9

Rename the sprites to standing and walking:

A future improvement would be to have additional images showing the right and left
legs moving forwards and backwards. We have not included that here, but it is included
as a suggestion once the program is complete.

We will add the code to go with the QuizMaster sprite later. Next we can add the start button sprite.

Use the “Create a sprite from a file” option and this time choose a button from the Things folder.

Initially the button is plain with no text. We will need to edit the costume to manually add the text.

Rename the sprite to StartButton and click on edit to change the costume.

Using the Text button set the font size to 14 and type “Start”. The text will be created, but it will
need to be moved to the centre of the button image.

10

Click on the black square block in the top left and drag the text so that it is in the centre of the
button.

:

The button should now look similar to below:

We can also set the Stage background image to an appropriate scene. I have chosen Indoors and
spotlight-stage.

You should now have a stage, QuizMaster and StartButton.

The QuizMaster and StartButton sprites are overlapping, but we will be only showing one at a time
when we complete the program.

11

The main program script
For this example we will have a master script that will send and receive messages from the other
sprites. This script will be within the stage.

In theory it could be that this script could be on any of the sprites and that sprite would be
responsible for triggering the other actions, but placing it on the stage makes it easier to find
particularly on larger games that may have dozens of sprites.

Click on the stage Scripts tab and add the “When (green flag) clicked” block to the scripts
area, by dragging it from the Controls category. This will mean that this script will start running
when we click on the green flag.

Next add a forever loop below the when flagged clicked block by dragging it from the control
category. The two blocks of code will snap together.

The forever loop will run the whole time that the program is running and anything that is included
in that will be continually repeated. In this case the forever loop will launch most of the other
scripts and will run once for every time that the game is played.

12

If we didn't include the forever loop here then we will only run the quiz game once and
it will then end. To play again then the player would need to start the game again using
the “Green Flag”. That would be perfectly valid too, but the forever loop is used here to
show how a program can keep running after it would otherwise end.

Now create a new variable by clicking on the Variables category and call it “Score”. Note that
because we are creating a variable on the stage it will be visible to all sprites automatically (there is
no “For this sprite only” checkbox which we will see later).

When we have created a variable there will be additional blocks added for reading and changing the
variable. Use the “set Score to 0” and put that as the first item in the forever loop. This will reset the
game score to zero at the start of each run of the game.

We want to be able to show and hide the start button as required. The stage cannot control the Sprite
directly so we need to send a broadcast message that tells the StartButton sprite to show and hide as
appropriate.

Add a “broadcast and wait” block to the forever loop and create a new message called
“show_startbutton”; This is done using the small down-arrow and choose “new...”.

We will also need to be able to communicate with the QuizMaster script and so we can create an
additional broadcast that the QuizMaster script can listen for. So add a second broadcast and wait
block with the message “start_quiz”.

The script should now look as below:

That is the first script complete, although it won't actually do anything until we create some code to

13

respond to the broadcast messages.

Before we move on to the next scripts here is an explanation of what this script will do. Read
through the explanation and compare it with the code on the screen.

When the green flag is clicked we go into a forever loop. The loop here means that when we reach
the end of the quiz, instead of the program stopping it will start again.

We set the Score variable to 0 – so far the player hasn't scored any point.

We then send a broadcast to tell the StartButton sprite to show itself and we then wait until it the
StartButton script finishes. The script on the StartButton will run until the button has been clicked
by the user, but we haven't created that script yet.

When the StartButton script finishes then we will continue to the next broadcast which is going to
tell the QuizMaster script that it's time for the quiz to start.

When the script on the QuizMaster finishes (after all the questions have been answered) then we
return to the forever loop. As we have reached the bottom we will jump back to the top of the
forever loop and start again.

Note that whilst we have referred to the broadcast as going to a particular sprite, as it's name
suggests the broadcast actually goes to all the sprites including the stage. It's just that in our case
only one of the sprites will actual act on each of the broadcast messages. If multiple sprites use the
broadcast message then the script will wait until all have finished before continuing past the wait.

The start button
The start button will appear when the game is first run (in this case when we receive the broadcast
message). Once the player clicks the button our script will hide the button and allow the program to
start.

The StartButton sprite is currently visible on the screen, however during the second run through the
program the button will have been hidden. So the first thing we need to do is to show the button.

First add the block “When I receive show_startbutton” from the control category. Then add a show
block from the Looks category. Ensure they snap together.

We now want to wait until the mouse is clicked on the button. This is done using the wait until
block. As its name suggests the script will wait until the specified condition is met.

14

To be able to check for both the mouse being over the button and the mouse button being clicked
we need to use an “and” block (from the operators category), with “touching mouse-pointer” (from
the Sensing category). The blocks are in reference to the current sprite so touching mouse-pointer
will be true when the mouse pointer is touching the button, we then also need the mouse button to
be pressed before the and condition is met. It should now look as show in the following code:

When the button is clicked we then need to hide the button and stop the script so that the main script
can continue.

The finished script should look as follows:

You can test the scripts so far by clicking on the green start flag. The start button should show, when
clicked it should disappear briefly and then because we haven't created the quiz yet it should go to
the next loop around and the button reappear.

The “stop script” block is not actually required. When the code reaches the end of a
script then it will stop that script automatically. It is however good practice to show the
end of a particular script and helps to make it easier to understand. In this game I have
added the stop script on the end of the code that is called by the broadcast messages as
the main script will be waiting on them to complete before continuing.

Creating the list variables
Before we add the scripts to the QuizMaster sprite we will add the list variables that will hold the
questions and answers. For this particular program these can be created so that they are visible to all
sprites or just within the QuizMaster sprite. We will create the variable so that it can be seen by all
sprites as that will make it simpler if we wanted to be able to add additional questions in future.

Click on the QuizMaster sprite, then click on “Make a list” from the Variables blocks, enter the
name of the list “questions” and select “For all sprites”.

15

As well as showing the questions list as an additional block within the variables another seven
blocks of code appear under the list section. These blocks are used to read or change the values of
the list. We will use some of these later so that the code can display the questions, but for now just
ensure that there is a tick next to questions so that we can see the list on the stage.

We can now add items to the list using the list block that has appeared on the stage.

16

Click on the + sign at the bottom of the list block to add three questions.

I have chosen three computer related questions. The questions can be on any topic and
an appropriate level of difficulty for the age that the quiz is going to be aimed at.

Use the same technique to add a second list called “answers” with the corresponding answers. The
position of the answer needs to line up with the same question number (see the numbers on the left).

17

We can now hide these from the stage by removing the ticks from the variable block section.

The Quiz Master Script

We are now ready for the scripts for the QuizMaster sprite.

First it is a good idea to hide the Start button from the stage. This is not strictly necessary, but will
make it easier to see how the character will look without a start button in front of them. This can be
achieved by opening the StartButton sprite and then double clicking on the hide block in the looks
section (there is no need to actually drag the hide block to the scripts area, you can still activate that
block from the palette area).

We will start with the QuizMaster sprite hidden until the start button has clicked.

This can be achieved by creating a script as below:

Note that this is the second “when green flag clicked” script we have created (the previous on the

18

Stage); both this and the one on the stage will start running when the start flag is pressed.

We will now add a second script to the QuizMaster sprite. This one will not run initially, but will
wait until after the start button has been clicked. We have already set up a broadcast from the stage
script, which will broadcast a message after the start button script completes, so we will listen for
that.

Add when I receive start_quiz (use the pull-down message to change the broadcast to listen for).

We want the quiz master to walk in from the left. Scratch uses an x-y co-ordinate system, so we can
use that to tell Scratch where to move the sprite to. The X-axis goes from -240 to +240 and the Y-
axis from -180 to +180, the centre of the screen is with both values at zero (0,0).

You can get an image showing the x-y coordinates by importing the xy-grid
background image into a scratch program.

 An easy way to get work out a specific position is to place your mouse to the required position and
then read the X and Y co-ordinates shown in the bottom right of the stage. Alternatively move the
sprite to the correct position and double-click on it, and the code blocks will be updated to the
current position.

19

Move the sprite using the “go to x: y:” block.

Note that whilst we have moved the sprite, when the program starts the sprite is hidden, so now it is
at the correct position we can set it to show.

We now want the sprite to move as though it's walking. It's possible to get a realistic representation
of walking by having multiple costumes with the legs at different positions. The costume we chose
does not have the corresponding costumes and for this example it is sufficient to have the person
move across the stage a bit at a time.

We shall have the character move a short distance at a time followed by a pause and then move
again until they reach the correct position.

20

This could be achieved using:

But that is an awful lot of commands. If we had to create an entire program by listing every single
step then it would get very long indeed. It would also be difficult to change the distance that the
person moves. Instead we can replace this with a single loop repeated 11 times.

So we can replace the previous block of code with the following:

which uses much less space.

We can then swap costume to the standing costume so that the quiz master faces the front of the
stage, and say a welcome message.

21

Rather than asking the questions by using a code block for each question we are going to create
another loop that will read out each question one at a time. We will also need a variable called
question_number to keep track of which question we are reading out. As none of the other sprite
need to know about this question_number variable we can create it for this sprite only, this reduces
the risk of problems if different sprites refer to the same variable name.

We will start with the quiz master telling the player which question number they are on. Rather than
having the sprite say “this is question” then wait before giving the number we can put this on one
line by using the join block. This can be inserted in place of the text on the “say for 2 seconds”
block. Don't connect this to the existing script just yet as we will be incorporating this into a loop.

We can then use the “ask and wait” block to to get a response, which will be stored into an (pre-
defined) variable called answer.

As our question is stored in a list we use the “item 1 of questions” block which provides the
contents of the list at a specified position. Use the variable question_number to determine which of
the questions to show.

The ask block will create the text on the screen and then provide an input field that the player can
type their response into.

Note that lists in Scratch start from position 1. This is how Scratch works and is more
natural for teaching to children, but most other programming languages start at 0
which is how computers start counting.

22

We now have the following that will ask the player the question and wait for them to reply. The
response will be stored as answer which is a block available from the Sensing category.

The answer provided by the player is stored in the answer variable which we can comparing against
the expected answer using an if block. We want to give a different message for an incorrect answer
so we use the “if – else” block.

The code for the check is as below:

If the answer given by the player matches the answer stored in the answers list then the
first section is run, otherwise the section after the else.

Read through the code above and make sure you understand what is happening, we have used
similar blocks before if you want to check anything. Normally you can just double-click to test a
block of code, but this is dependant upon the other code so you will need to test the rest of the code
together.

In Scratch the answer will only be considered as correct if it is exactly the same as the
value in the list. Unlike other programming languages comparing strings in Scratch is
not case sensitive so the following will all be considered the same: monitor; Monitor
and MonITor. Any other differences (including a space character at the end) would not
be considered the same answer.

23

We want to run through this three times, once for each question, so we can incorporate this into a
repeat loop. When you join the blocks together we should have a long script as follows:

I've also increased the question_number at the bottom of the repeat loop so that we move on to the
next question.

Testing whilst creating the program
We are still not finished yet, but it's a good point to test the code and see if it is behaving as we
expect. This will make fixing any bugs easier than if we wait until we have completed everything.
First check that the code is entered the same as above. It can be easy to make a mistake on such a
large block of code.

In professional software the code will need to be thoroughly tested as it is created. In
some cases there may be an entire program written that can perform automatic testing
on the code so as to try and identify bugs that would otherwise remain hidden and
cause problems in certain circumstances.

To make it easier to see what is happening we will set the Score variable to display on the stage
(tick box next to the variable) so that we can see the score increasing. The program doesn't yet give
any feedback on the current score so we can check this value is changing as we expect.

Click on the green start flag and then the start button and see what happens.
There are a couple of things we haven't implemented yet, so don't worry if the quiz master looks

24

like they are standing when they should be walking and that the quiz master does not get hidden at
the end.

• Is the code working as it should?
• Does the score increase correctly?
• If anything isn't behaving as you expect can you think what the problem is?

Debugging
If you haven't guessed yet the program isn't running quite as it should. When writing a program then
it is common for there to be errors in the code, in computer terms we call these bugs and the process
of finding and fixing the bugs debugging. Bugs can exist because of a variety of different reasons,
some common mistakes are

• Putting a block of code inside the wrong section (such as after a loop rather than inside the
loop).

• Referring to the wrong variable (for example referring to questions when you should be
referring to answers).

• Choosing the wrong command (changing a value by adding to the existing variable when
you mean to setting the variable to a new value – or vice-versa).

• Typing errors (not so much in Scratch where the blocks are built, but easy to make in other
programming languages).

First we need to have a way of testing the code so that we can find the bugs. You can just try
randomly getting some answers right and some wrong, but that could miss common bugs. To test
for bugs we will create a set of tests that covers a number of possible situations.

It is not always necessary to test the behaviour as formally as we will do here, but I
have created some formal tests as these will help explain the logical reasoning
required when debugging problems. Here are a few tests that we can do that will help
find some bugs, they include the input we should type and some of the expected
outputs from the program.

Test 1

Answer all questions correctly.
Expected score: 3
Output from sprite: After each question the quiz master should say “correct”

Test 2

Answer first question incorrectly, the rest correctly.
Expected score: 2
Output from sprite: After first question the quiz master should say “incorrect” and provide the
correct answer, after subsequent questions the quiz master will say “correct”

25

Test 3

Answer first two questions correctly, the third incorrectly
Expected score: 2
Output from sprite: After first two questions the quiz master will say “correct”, after third they will
say “incorrect” and provide the correct answer.

Test 4

Answer all questions incorrectly
Expected score: 0
Output from sprite: After each question the quiz master will say that the answer was “incorrect” and
provide the correct answer.

So let's run the test and see what happens. Click on the green arrow and then enter an appropriate
response for each of the tests.

Test 1 is successful. The score is displayed correctly as 3, but does go back to 0 when it starts the
loop for the next attempt, which is fine.

Test 2 fails. The score is updated correctly to 2 (returns to 0 on the start of the next loop), but it does
not display the correct answer after the first incorrect answer.

Rather than try and find the bug now we will continue with the rest of the tests as they may help
give a clue to where the bug is.

Test 3 appears to work correctly. It displays the correct score and gives the answer when the
incorrect answer is given. However when we start the next run through of the game the previous
incorrect answer is still displayed.

Test 4 fails. The first two do not display the correct answer and the final answer is still showing
when we start the game again.

The correct answers all appear to work OK, but there is a bug with displaying the correct answer
when a wrong answer is received from the player.

We can start by looking at the code responsible for displaying the responses to the player.

We still need to keep an open mind as often bugs can be a result of code prior to where the
symptoms are seen, but it's a good place to start.

Using logical reasoning we know that the answer is shown if it's the last question that is incorrect.
As we don't do anything differently for the last question (it uses the same block of code as the

26

previous code) we can deduce that the other questions may still be issuing the message, but that it is
disappearing before it is possible to read (or even see) it.

Looking at the part of code responsible for issuing the message and we can see that the first
message which we do see “That is not the correct answer. The correct answer is:” has “for 2 secs” in
the code whereas the actual answer does not. We can deduce that when that line is run it displays
the message, but that it disappears again before it is seen. In the case of the last question it is not
hidden because we have then exited out of the loop.

We can therefore replace the say block with:

We can then re-run all the tests which should all work.

Note that we still re-run the tests that worked the first time in case our change unwittingly changed
something that was working before.

The tests are not fully comprehensive in that not all possible situations are tested. Even
with automated testing it would not be possible to fully test every possible string
combination. Testing is normally done on a manageable number of different
combinations to try and capture some of the most common occurrences, which is
considered sufficient to capture most bugs.

Other debugging techniques

Fortunately the bug in this program was fairly easy to find, however that is not always the case. One
thing that can be an issue is that the bug can be in a different part of code to where the symptom is,
or the mistake may not be so easy to find.

If the bug is not easy to find then the following techniques may also help:

• Logical reasoning (work through the program step-by-step in your mind).
• Step through the program (using the single-step mode in Scratch – or add breakpoints).
• Look at the values in the variables (display appropriate variables on the stage as the program

runs).
• Write the code out in your own words based on what you see in the program (the opposite of

creating the program from the algorithm).
• Create a flow diagram of the expected flow of the program.

Bugs in software are often caused by common mistakes. As you become more experienced with
writing and debugging programs then you become more used to recognising common errors and it
makes debugging easier.

It is also useful to have a second person help look for bugs. It is easy to think in terms of what you
expected the code to do rather than what you have actually created, which is something that may be
easier for a second person to see.

27

Telling the player how they did

Now we have established the program is processing the user input as we expect, we can now
provide additional output back to the user telling them how well they have done. In this case we
will give them a message telling them if they “Got full marks”, “Did reasonably well” (between one
and two correct) or if they need to “try again” (got zero marks).

If there were only two possible outcomes then we could use a single if-else block as we have used
previously. When we have more than two then we need to nest two if-else blocks. So if the first
condition is met then we give the full marks message, but if not (else) we have to perform a second
test to see whether they got some or no marks.

I have used an equals test for the first condition and then a greater than test for the second. We could
have used an equals test for the condition where no questions were answered correctly, or we could
have used a not equals to zero for the one where one or two answers were correct. The method used
doesn't matter as long as the logic matches up with the test to be performed.

I have used a join in the second instance (as we used previously to represent the question number)
so that we can include the actual score in the response to the player.

Leave the stage
Finally we need the quiz master to leave the stage.

We would like them to leave from the same side as they arrived so they need to walk in the opposite
direction. This could be achieved by creating another costume with the direction changed, but can
also be achieved by making the sprite face the opposite direction.

In this instance we will use the same costume, but change the direction of the sprite. This will also
mean that the sprite will move forward rather than having to give them a negative direction.

The code block we will use is point in direction:

Zero degrees is pointing upwards so set the value to -90 which is facing to the left. Put the block
onto the scripts, but don't join it to the existing code yet. Double click to see if it works.

28

Oh dear!
Not quite what we wanted. The character has been turned around to face to the left, but is now
upside down.

This is easily corrected using the buttons on left hand side of the sprite section:

There are three buttons on the left. The top one allows the sprite to rotate (which is what has
happened here), the middle one (arrows pointing left and right) only allows the sprite to flip side-to-
side (which is what we want here) and the bottom does not allow any rotation, the sprite will always
look to the right.

Click the middle button and that looks much better.

We can now change to the walking costume and use the same movement code we used earlier to
make the Quiz Master walk off the stage. Finishing off by hiding the sprite before turning them to
point the correct direction for the next game to start.

We can then add this so the existing script and add a stop script to show that we will complete that
script.

29

The completed script for the Quiz Master sprite

After adding the final bit to the script the completed QuizMaster script is as shown below:

You should now be able to test the entire game. Remember to run through all four tests to make sure
it behaves as required.

30

Summary so far
It's taken us a while to get here, but we do now have a working game that can be played. You could
now upload the game to the Scratch web site and share it with others.

I have already uploaded this game at:
scratch.mit.edu/users/penguintutor/

Whilst the completed code is quite long and at first would have looked overwhelming, by creating it
block-by-block you should see that it is fairly easy to understand how it works. We have covered
many of the techniques used to make games in Scratch and you should now know enough to create
your own games..

Next steps
Whilst we can feel proud about the quiz we've made so far there are still some areas where it could
be improved. Here are a few ideas:

• Have appropriate music playing as the QuizMaster walks on and/off the stage and when the
results are announced.

• Make the walk more realistic by having the character's legs move backwards and forwards
(additional costumes are required).

• Add more questions, or questions on a different theme.

Further resources
There are a number of free resources for learning Scratch and programming in general. I have
provide a number of useful links below.

• www.penguintutor.com/teachers
Accompanying website for this guide.

• www.computingatschool.org.uk
Organisation supporting computer science education.

• CASPrimaryComputing
Computing at School guide for primary school teachers.

• scratch.mit.edu
Scratch website

• www.themagpi.com
Free online magazine for the Raspberry Pi (includes Scratch examples)

• www.codeclub.org.uk
After school club using Scratch

31

http://www.codeclub.org.uk/
http://www.themagpi.com/
http://scratch.mit.edu/
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
http://www.computingatschool.org.uk/
http://www.penguintutor.com/teachers/
http://scratch.mit.edu/users/penguintutor/

Thanks in part to the Raspberry Pi project there has been a big increase in the number of free
resources being provided relating to programming on the Raspberry Pi. The Raspberry Pi is a great
tool for teaching programming, but much of these materials (especially those relating to Scratch)
can be used regardless of the computer platform. The exception is any that require the use of the
GPIO ports which are not available on a traditional desktop or laptop computer.

Copyright
This guide is provided through a creative commons license - Attribution-ShareAlike 3.0 Unported.

License details: http://creativecommons.org/licenses/by-sa/3.0/

32

http://creativecommons.org/licenses/by-sa/3.0/

	Introduction
	About Scratch
	Getting started with Scratch
	A. The Scratch stage
	B. The sprite list area
	C. The sprite edit area
	D. The code blocks area

	Designing a game
	Design Specification – Quiz Game
	Aim
	Sprites
	Variables

	Running Scratch
	Creating the code
	Setting up the Sprites
	The main program script
	The start button
	Creating the list variables
	The Quiz Master Script

	Testing whilst creating the program
	Debugging
	Test 1
	Test 2
	Test 3
	Test 4
	Other debugging techniques
	Telling the player how they did

	Leave the stage
	The completed script for the Quiz Master sprite
	Summary so far
	Next steps
	Further resources
	Copyright

