
Space Asteroids – Scratch
Physical computing and game programming with the

Raspberry Pi

This version is based on Scratch 2, which is no longer included with the Raspberry Pi.
Please see the Scratch 3 version at: http://www.penguintutor.com/space-asteroids

In this worksheet you will learn how to create a computer game including your own interactive
game controller made with electronic components.

The game is a combination of the two classic games Space Invaders and Asteroids. Asteroids are
falling towards the earth and need to be stopped using a missile launcher than fires straight up at the
incoming asteroids.

A screen-shot of the game is shown below:

www.penguintutor.com Page 1

You will need:

Raspberry Pi (Pi2 or Pi3)
Breadboard
3 x Push-to-make PCB switches
LED
220Ω resistor
Male-to-female and male-to-male jumper leads

http://www.penguintutor.com/
http://www.penguintutor.com/space-asteroids

Getting Started

This version is based around Scratch 2, which can be launched from the programming menu on the
Raspberry Pi.

First delete the cat sprite by right clicking and choosing delete. Add three new sprites using the New
Sprite from Library button:

Choose the following (or any other suitable images): Sports → Ball (call this asteroid), Transport →
Spaceship (call this launcher) and Things → Star 2 and call that missile.

www.penguintutor.com Page 2

Alternatively there are three
Sprite images which can be
downloaded from from
www.penguintutor.com/space-
asteroids.

http://www.penguintutor.com/
http://www.penguintutor.com/space-asteroids
http://www.penguintutor.com/space-asteroids

You can now choose a suitable background using the stage, new backdrop button
. I suggest the one named space.

Use the resize buttons to make the sprites appropriate sizes to each
other as shown in the image below.

Controlling the launcher with the keyboard

The launcher needs to move from side-to-side. First you will set this up using the keyboard and then
add the electronics to create your own controller.

Click on the launcher sprite and then choose the scripts tab on the right hand side.

Create the code shown below (note that the different colour blocks corresponds with the categories
that can be selected).

www.penguintutor.com Page 3

http://www.penguintutor.com/

This code will run whenever the green flag (start program) is clicked. It sets the position of the
launcher to the bottom middle and then loops forever moving left if the left-arrow is pressed and
right if the right-arrow is pressed.
Scratch automatically stops when it reaches the side of the screen, so there is no need to add any
code to check for that.

You should be able to test this by clicking on the green arrow above the stage and using the left and
right arrow keys on your keyboard.

Adding the Electronic Switches

You can now add the three buttons (switches) to the breadboard and connect them to the Raspberry
Pi GPIO pins. There are two buttons to move the launcher left and right, which you will code up
now and one to launch missiles which comes later.

Check you wire these correctly to the Raspberry Pi. The colour of the wires does not matter as long
as they go to the correct position; for example the ground wire (shown as black) goes to the top row
3rd pin from the left and the wire to the first switch (shown as yellow) goes to the bottom row 2nd pin
from the left.

www.penguintutor.com Page 4

http://www.penguintutor.com/

The switches connect the GPIO input pin down to ground (0v). The way that this works is due to an
internal pull-up resistor inside the Raspberry Pi. When the switch is not pressed then the pull-up
resistor (which is within the processor so cannot be seen) takes the input to a high voltage. When
the button is pressed then it connects the input pin to ground which is at zero volts. As the resistance
through the switch is much less than the pull-up resistor this sets the GPIO input pin to be a low
value.

The Raspberry Pi records these as two values:
Switch not pressed = High
Switch pressed = Low

Once the circuit is wired together you can update the code to look for the High and Low values.
First you need to enable the GPIO extension by clicking on the script category “More Blocks”, then

www.penguintutor.com Page 5

http://www.penguintutor.com/

click on “Add an Extension”. Choose Pi GPIO and click OK (this only needs to be done once and
then this is permanently enabled for this program).

This will add GPIO blocks to the “More Blocks” category. Next you need to tell the Raspberry Pi to
treat those particular pins as inputs. You can then replace the existing keyboard sensing blocks with
the GPIO block, or add an “OR” operator as I have done in the example below.

Also note that the NOT operator is used which turns the value to be the opposite. This is required to
detect when the button is pressed which changes the value to Low. The NOT operator switches
turns that around so it tests when the GPIO port is NOT High (ie. when it is Low).

www.penguintutor.com Page 6

The pins on the GPIO are labelled in terms of how they connect to the processor rather
than the numbering on the Raspberry Pi.
See www.penguintutor.com/raspberrypi-gpio for more details.

http://www.penguintutor.com/
http://www.penguintutor.com/raspberrypi-gpio

Asteroids and Gravity

At the moment the asteroid is just hanging in the air, but instead you need to add code to have
gravity pull it down to earth.

This can be added by clicking onto the Asteroid and then going to the asteroid's script area. Then
add the following code:

This places the asteroid in the top middle position. It then has a loop which will keep running until
the asteroid reaches the bottom of the screen. During the loop the asteroid will keep moving down
by 4 steps at a time.

When the asteroid reaches the bottom then it will say game over and then stop the game.

www.penguintutor.com Page 7

http://www.penguintutor.com/

Adding the missile

you now need some way of firing a missile at the asteroid. This needs changes to both the launcher
scripts, so that it can fire the missile and to the missile itself. Start by clicking on the launcher and
editing the previous script to add the parts related to the missile as below:

Most of this is similar to the code used to detect the left and right buttons. The new thing is the
“broadcast” block. The broadcast is used in Scratch to send a message between scripts that are
running on different sprites, in this case from the launcher to the missile. When you add the
broadcast block then you need to first choose “new message ...” and type in the message “fire
missile”.

www.penguintutor.com Page 8

http://www.penguintutor.com/

One extra thing we are going to need is a variable which will keep track of whether the missile has
been fired or not. This will prevent us from launching a missile until the previous one has gone off
the screen or hit an asteroid. To create the variable go to the missile sprite and in the script tab
choose data and add Make a Variable.

Enter the variable name “fired” and select for this sprite only and then click OK.

By default the variable will be shown on the stage, but as this is an internal variable we don't want
the user to see it, so untick the box next to the new variable.

www.penguintutor.com Page 9

http://www.penguintutor.com/

Now add the following code into the missile's script area.

The block of code first hides the missile (we don't want to see it until it's been
launched) and sets the fired status to 0 (not fired). It then runs a loop which first checks to see if the
missile has been fired, in which case move it up the screen. It then checks to see if the new position
is at the top of the screen, in which case it sets the fired back to 0 and hides the missile.

The block runs whenever it receives the broadcast message from the
launcher. Assuming the missile has not recently been fired, it then sets the position to be the top of
the launcher, makes it visible and then sets the fired status to 1 (so now it will be moved up by the
previous block of code).

Detecting a hit

The next thing is to detect when the missile hits the asteroid. To implement this the code needs to
updated on the missile and the asteroid sprites so that it can trigger a new asteroid once the previous
one is destroyed. You will once again need to add a new broadcast message to communicate
between the two sprites.

www.penguintutor.com Page 10

http://www.penguintutor.com/

Start by updating the missile's scripts to detect if the missile touches the asteroid.

You just need to add the code from if touching Asteroid downwards.

This code detects if the missile hits the asteroid and if it does then sends the broadcast message “hit
asteroid” and sets the fired status to 0 and hides the missile.

Next on the asteroid add the following code block in addition to the one that is already there.

At the moment this just moves the asteroid to a random position near the top of the stage. This
means that the next asteroid could appear at any position from the left to the right of the stage, or
anywhere in between.

Keeping score

You now have a playable game, but to be able to compare how well you did with your friends then
it's a good idea to add a score variable to track how many asteroids you manage to hit.

www.penguintutor.com Page 11

http://www.penguintutor.com/

You will need to create a new variable called score. This can be created “for all sprites” so it can be
created under any of the sprites. Next update the asteroid's scripts to add the two new score related
blocks shown below:

The first is to set the score to zero when starting the game and then the other increases the score
every time that the missile hits an asteroid.

www.penguintutor.com Page 12

http://www.penguintutor.com/

Add an LED output

You have used electronic inputs in the form of some push button switches, but now it's time to add
an output. The most simple form of output is an LED which lights up when a GPIO pin is set high.
This is what you should add here. As well as the LED you will also need to add a 220Ω resistor. The
resistor limits the amount of current to protect the LED as well as the Raspberry Pi. The resistors
are colour coded and for a 220Ω resistor it would normally have 4 bands of colours: red, red, brown
and gold.

The LED and resistor should be added to the circuit as shown below:

The resistor can be connected either way around, but the LED needs to be connected so that the
longer lead is connected to the breadboard where the grey wire is and the shorter lead to the resistor.

Turning the LED on and off is as simple as turning the GPIO port high and low. You can do this by
updating the existing script on the Asteroid.

www.penguintutor.com Page 13

http://www.penguintutor.com/

Making the game your own

The game is now complete. If you fancy a challenge then you could update the code to customize it
yourself. You could create your own custom sprites, or have the asteroids change speed to make it
harder (or easier).

If you create your own version, please let me know on Twitter @penguintutor and perhaps your
ideas will be included as suggestions on the on the web page: http://www.penguintutor.com/space-
asteroids

www.penguintutor.com Page 14

http://www.penguintutor.com/
http://www.penguintutor.com/space-asteroids
http://www.penguintutor.com/space-asteroids

	Physical computing and game programming with the Raspberry Pi
	Getting Started
	Controlling the launcher with the keyboard
	Adding the Electronic Switches
	Asteroids and Gravity
	Adding the missile
	Detecting a hit
	Keeping score
	Add an LED output
	Making the game your own

